TERRAMETRA

COMPLEX NUMBERS

Terrametra Resources
Lynn Patten

1.3

COMPLEX NUMBERS

- Basic Concepts
- Operations on Complex Numbers

BASIC CONCEPTS

There is no real number solution of the equation

$$
x^{2}=-1
$$

since no real number, when squared, gives -1 .

To extend the real number system to include solutions of equations of this type, the number \boldsymbol{i} is defined to have the following property ...

$$
i=\sqrt{-1} \quad \text { therefore } \quad i^{2}=-1
$$

BASIC CONCEPTS

> If \boldsymbol{a} and \boldsymbol{b} are real numbers, then any number of the form $a+b i$ is a complex number.

In the complex number $\boldsymbol{a}+\boldsymbol{b i}$, a is the real part and b is the imaginary part.

BASIC CONCEPTS

Two complex numbers $\boldsymbol{a}+\boldsymbol{b i}$ and $\boldsymbol{c}+\boldsymbol{d i}$ are equal, provided that their real parts are equal and their imaginary parts are equal, ...

$$
\boldsymbol{a}+\boldsymbol{b i}=\boldsymbol{c}+\boldsymbol{d i} \text { if and only if } \boldsymbol{a}=\boldsymbol{c} \text { and } \boldsymbol{b}=\boldsymbol{d}
$$

BASIC CONCEPTS

For complex number $\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i}$,
if $\boldsymbol{b}=\mathbf{0}$, then $\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i}=\boldsymbol{a}, \ldots$

Thus, the set of real numbers is a subset of the set of complex numbers.

BASIC CONGEPTS

If $\boldsymbol{a}=\mathbf{0}$ and $\boldsymbol{b} \neq \mathbf{0}$, the complex number is said to be a pure imaginary number.

A pure imaginary number, or a number like $\mathbf{7 + 2 \boldsymbol { i }}$ with $\boldsymbol{a} \neq \mathbf{0}$ and $\boldsymbol{b} \neq \mathbf{0}$, is a nonreal complex number.

A complex number written in the form $\boldsymbol{a}+\boldsymbol{b i}$ (or $\boldsymbol{a}+\boldsymbol{i} \boldsymbol{b}$) is in standard form.

BASIC CONCEPTS

Complex Numbers $a+b i$, for a and b Real

THE EXPRESSION $\sqrt{-a}$

THE EXPRESSION $\sqrt{-\boldsymbol{a}}$

If $\boldsymbol{a}>\mathbf{0}$, then $\sqrt{-a}=\boldsymbol{i} \sqrt{\boldsymbol{a}}$.

Example 1
 Writing $\sqrt{-a}$ as $i \sqrt{a}$

1(a) Write as the product of a real number and \boldsymbol{i}, using the definition of $\sqrt{-a}$.

$$
\sqrt{-16}
$$

Solution:

$$
\sqrt{-16}=i \sqrt{16}=4 i
$$

Example 1
 Writing $\sqrt{-a}$ as $i \sqrt{a}$

1(b) Write as the product of a real number and \boldsymbol{i}, using the definition of $\sqrt{-a}$.

$$
\sqrt{-70}
$$

Solution:

$$
\sqrt{-70}=i \sqrt{70}=i \sqrt{70}
$$

Example 1
 Writing $\sqrt{-a}$ as $i \sqrt{a}$

1(c) Write as the product of a real number and \boldsymbol{i}, using the definition of $\sqrt{-\boldsymbol{a}}$.

$$
\sqrt{-48}
$$

Solution:

$$
\sqrt{-48}=i \sqrt{48}=i \sqrt{16 \cdot 3}=4 i \sqrt{3}
$$

OPERATIONS on COMPLEX NUMBERS

Products or quotients with negative radicands are simplified by first rewriting $\sqrt{-a}$ as $\boldsymbol{i} \sqrt{\boldsymbol{a}}$ for a positive number \boldsymbol{a}, \ldots

Then the properties of real numbers and the fact that $\boldsymbol{i}^{\mathbf{2}}=\mathbf{- 1}$ are applied.

OPERATIONS on COMPLEX NUMBERS

Caution

When working with negative radicands, use the definition $\sqrt{-a}=i \sqrt{a}$ before using any of the other rules for radicals.

In particular, the rule

$$
\sqrt{b} \cdot \sqrt{d}=\sqrt{b d}
$$

is valid only when \boldsymbol{b} and \boldsymbol{d} are not both negative.

$$
\begin{array}{cc}
\sqrt{-4} \cdot \sqrt{-9}=2 i \cdot 3 i=6 i^{2}=-6 & \text { is correct, } \\
\text { while } & \\
\sqrt{-4} \cdot \sqrt{-9}=\sqrt{(-4)(-9)}=\sqrt{36}=6 & \text { is incorrect. }
\end{array}
$$

Example 2

Finding Products and Quotients Involving $\sqrt{-a}$

2(a) Multiply or divide, as indicated. Simplify the answer.

$$
\sqrt{-7} \cdot \sqrt{-7}
$$

Solution:
First write all square roots in terms of i.

$$
\begin{aligned}
\sqrt{-7} \cdot \sqrt{-7} & =i \sqrt{7} \cdot i \sqrt{7} \\
& =i^{2}(\sqrt{7})^{2}=i^{2} \cdot 7=-7 \quad i^{2}=-1
\end{aligned}
$$

Example 2

Finding Products and Quotients Involving $\sqrt{-a}$

2(b) Multiply or divide, as indicated. Simplify the answer.

$$
\sqrt{-6} \cdot \sqrt{-10}
$$

Solution:

$$
\begin{aligned}
\sqrt{-6} \cdot \sqrt{-10} & =i \sqrt{6} \cdot i \sqrt{10}=-1 \sqrt{60} \\
& =-1 \sqrt{4 \cdot 15}=-1 \cdot 2 \sqrt{15}=-2 \sqrt{15}
\end{aligned}
$$

Example 2

Finding Products and Quotients Involving $\sqrt{-a}$

2(c) Multiply or divide, as indicated. Simplify the answer.

$$
\frac{\sqrt{-20}}{\sqrt{-2}}
$$

Solution:

$$
\frac{\sqrt{-20}}{\sqrt{-2}}=\frac{i \sqrt{20}}{i \sqrt{2}}=\sqrt{\frac{20}{2}}=\sqrt{10} \quad \text { Quotient rule for radicals. }
$$

Example 2

Finding Products and Quotients Involving $\sqrt{-a}$

2(d) Multiply or divide, as indicated. Simplify the answer.

$$
\frac{\sqrt{-48}}{\sqrt{24}}
$$

Solution:

$$
\frac{\sqrt{-48}}{\sqrt{24}}=\frac{i \sqrt{48}}{\sqrt{24}}=i \sqrt{\frac{48}{24}}=i \sqrt{2} \quad \text { Quotient rule for radicals. }
$$

Example 3
 Simplifying a Quotient Involving $\sqrt{-a}$

3(a) Write $\frac{-8+\sqrt{-128}}{4}$ in standard form $\boldsymbol{a}+\boldsymbol{b i}$.

Solution: $\quad=\frac{-8+\sqrt{-64 \cdot 2}}{4}$

$$
=\frac{-8+8 i \sqrt{2}}{4} \quad \sqrt{-64}=8 i
$$

Factor.

$$
=-2+2 i \sqrt{2}
$$

Lowest terms.

ADDITION and SUBTRACTION of COMPLEX NUMBERS

ADDITION and SUBTRACTION of COMPLEX NUMBERS

For complex numbers $\boldsymbol{a}+\boldsymbol{b i}$ and $\boldsymbol{c}+\boldsymbol{d i}$,

$$
\begin{gathered}
(a+b i)+(c+d i)=(a+c)+(b+d) i \\
\text { and } \\
(a+b i)-(c+d i)=(a-c)+(b-d) i
\end{gathered}
$$

Addition and Subtraction of Complex Numbers

4(a) Find the sum or difference.
Write answer in standard form.

$$
(3-4 i)+(-2+6 i)
$$

Solution:
\(\overbrace{[3+(-2)]}^{\substack{Add

real

parts}}+\overbrace{[-4+6] i}^{\)| Add |
| :---: |
| imaginary |
| parts |$}$

Commutative, associative, distributive properties.

$$
=1+2 i \quad \text { Standard form }
$$

Example 4

Addition and Subtraction of Complex Numbers

4(b) Find the sum or difference. Write answer in standard form.

$$
(-4+3 i)-(6-7 i)
$$

Solution:

$$
\begin{aligned}
(-4+3 i)-(6-7 i) & =(-4-6)+[3-(-7)] i \\
& =-10+10 i \quad \text { Standard form. }
\end{aligned}
$$

MULTIPLICATION of COMPLEX NUMBERS

MULTIPLICATION of COMPLEX NUMBERS

For complex numbers $\boldsymbol{a}+\boldsymbol{b i}$ and $\boldsymbol{c}+\boldsymbol{d i}$,

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

MULTIPLICATION of COMPLEX NUMBERS

The product of two complex numbers is found by multiplying as though the numbers were binomials and using the fact that $i^{2}=-1$, as follows:

$$
(a+b i)(c+d i)=a c+a d i+b i c+b i d i \quad \text { FOIL }
$$

$$
=a c+a d i+b c i+b d i^{2}
$$

Distributive property. $i^{2}=-1$

$$
\begin{aligned}
& =a c+(a d+b c) i+b d(-1) \\
& =(a c-b d)+(a d+b c) i
\end{aligned}
$$

Example 5
 Multiplication of Complex Numbers

5(a) Find the product.
Write answer in standard form.

$$
(2-3 i)(3+4 i)
$$

Solution:

$$
\begin{array}{rlrl}
(2-3 i)(3+4 i) & =2(3)+2(4 i)-3 i(3)-3 i(4 i) \quad \text { FOIL } \\
& =6+8 i-9 i-12 i^{2} & & \text { Multiply. } \\
& =6-i-12(-1) & & \text { Combine like terms. } \\
& =18-i & & i^{2}=-1 \\
& & \text { Standard form. }
\end{array}
$$

Example 5

 Multiplication of Complex Numbers5(b) Find the product.
Write answer in standard form.

$$
(4+3 i)^{2}
$$

Remember to add twice the product of the two terms.

Solution:

$$
\begin{aligned}
(4+3 i)^{2} & =4^{2}+2(4)(3 i)+(3 i)^{2} & & \text { Square of a binomial. } \\
& =16+24 i+9 i^{2} & & \text { Multiply. } \\
& =16+24 i+9(-1) & & i^{2}=-1 \\
& =7+24 i & & \text { Standard form. }
\end{aligned}
$$

Example 5

Multiplication of Complex Numbers

5(c) Find the product.
Write answer in standard form.

$$
(6+5 i)(6-5 i)
$$

Solution:

$$
\begin{array}{rlrl}
(6+5 i)(6-5 i) & =6^{2}-(5 i)^{2} \quad \begin{array}{l}
\text { Product of the sum and } \\
\text { difference of two terms. }
\end{array} \\
& =36-25(-1) \quad & i^{2}=-1 \\
& =36+25 & & \text { Multiply. } \\
& =61 \text { or } 61+0 i & & \text { Standard form. }
\end{array}
$$

Example 5 Multiplication of Complex Numbers

Example 5(c) showed that ...

$$
(6+5 i)(6-5 i)=61
$$

The numbers $6+5 i$ and $6-5 i$ differ only in the sign of their imaginary parts and are called complex conjugates.

The product of a complex number and its conjugate is always a real number.

This product is the sum of the squares of the real and imaginary parts.

PROPERTY of COMPLEX CONJUGATES

PROPERTY of COMPLEX CONJUGATES

For complex numbers \boldsymbol{a} and \boldsymbol{b},

$$
(a+b i)(a-b i)=a^{2}+b^{2}
$$

Example 6

Multiplication of Complex Numbers

6(a) Find the quotient.
Write answer in standard form.

$$
\frac{3+2 i}{5-i}
$$

Solution:

$$
\begin{aligned}
\frac{3+2 i}{5-i} & =\frac{(3+2 i)(5+i)}{(5-i)(5+i)} \\
& =\frac{15+3 i+10 i+2 i^{2}}{25-i^{2}}
\end{aligned}
$$

Multiply by the complex conjugate of the denominator in both the numerator and the denominator.

Multiply.

Example 6

Multiplication of Complex Numbers

Solution (cont'd):

$$
\begin{aligned}
\frac{15+3 i+10 i+2 i^{2}}{25-i^{2}} & =\frac{13+13 i}{26} & & \begin{array}{l}
\text { Combine like terms. } \\
i^{2}=-1
\end{array} \\
& =\frac{13}{26}+\frac{13 i}{26} & & \frac{a+b i}{c}=\frac{a}{c}+\frac{b i}{c} \\
& =\frac{1}{2}+\frac{1}{2} i & & \begin{array}{l}
\text { Write in lowest terms } \\
\text { and standard form. }
\end{array}
\end{aligned}
$$

Check:

$$
\left(\frac{1}{2}+\frac{1}{2} i\right)(5-i)=3+2 i
$$

TERRAMETRA

Example 6 Multiplication of Complex Numbers

6(b) Find the quotient.
Write answer in standard form.

$$
\frac{3}{i}
$$

Solution:

$$
\begin{aligned}
\frac{3}{i}=\frac{3(-i)}{i(-i)} & =\frac{-3 i}{-i^{2}}=\frac{-3 i}{1} \quad \begin{array}{c}
-i \text { is the conjugate of } i \\
\text { and } \\
-i^{2}=-\left(i^{2}\right)=-1(-1)=1
\end{array} \\
& =-3 i \quad \text { or } 0-3 i \quad \text { Standard form. }
\end{aligned}
$$

Powers of i

Powers of \boldsymbol{i} can be simplified using the facts ...

$$
i^{2}=-1 \text { and } i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1
$$

$$
\begin{array}{lll}
i^{1}=i & i^{5}=i & i^{9}=i \\
i^{2}=-1 & i^{6}=1 & i^{10}=1 \\
i^{3}=-i & i^{7}=-i & i^{11}=-i \\
i^{4}=1 & i^{8}=1 & i^{12}=1 \ldots
\end{array}
$$

